Correcting Covariate Shift with the Frank-Wolfe Algorithm
نویسندگان
چکیده
Covariate shift is a fundamental problem for learning in non-stationary environments where the conditional distribution ppy|xq is the same between training and test data while their marginal distributions ptrpxq and ptepxq are different. Although many covariate shift correction techniques remain effective for real world problems, most do not scale well in practice. In this paper, using inspiration from recent optimization techniques, we apply the Frank-Wolfe algorithm to two well-known covariate shift correction techniques, Kernel Mean Matching (KMM) and Kullback-Leibler Importance Estimation Procedure (KLIEP), and identify an important connection between kernel herding and KMM. Our complexity analysis shows the benefits of the Frank-Wolfe approach over projected gradient methods in solving KMM and KLIEP. An empirical study then demonstrates the effectiveness and efficiency of the Frank-Wolfe algorithm for correcting covariate shift in practice.
منابع مشابه
Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملBlock-Coordinate Frank-Wolfe for Structural SVMs
We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves the same convergence rate as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this algorithm has the same low iterat...
متن کاملLinear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls
We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Our algorithm has a linear convergence rate when the objective function is smooth and str...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملThe Stiff Is Moving - Conjugate Direction Frank-Wolfe Methods with Applications to Traffic Assignment
We present versions of the Frank-Wolfe method for linearly constrained convex programs, in which consecutive search directions are made conjugate. Preliminary computational studies in a MATLAB environment applying pure Frank-Wolfe, Conjugate direction Frank-Wolfe (CFW), Bi-conjugate Frank-Wolfe (BFW) and ”PARTANized” Frank-Wolfe methods to some classical Traffic Assignment Problems show that CF...
متن کامل